Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Cell Biochem Funct ; 41(8): 1330-1342, 2023 Dec.
Article En | MEDLINE | ID: mdl-37805950

Unpredictable chronic mild stress (UCMS) leads to variable metabolic effects. Oxidative stress (OS) of adipose tissue (AT) and mitochondrial energy homeostasis is little investigated. This work studied the effects of UCMS on OS and the antioxidant/redox status in AT and mitochondrial energy homeostasis in rats. Twenty-four male Wistar rats (180-220 g) were divided into two equal groups; the normal control (NC) group and the UCMS group which were exposed to various stresses for 28 days. An indirect calorimetry machine was used to measure volumes of respiratory gases (VO2 & VCO2 ), total energy expenditure (TEE), and food intake (FI). The AT depots were collected, weighed, and used for measuring activities and gene expression of key antioxidant enzymes (GPx1, SOD, CAT, GR, GCL, and GS), OS marker levels including superoxide anion (SA), peroxynitrite radical (PON), nitric oxide (NO), hydrogen peroxide (H2 O2 ), lipid peroxides (LPO), t-protein carbonyl content (PCC), and reduced/oxidized glutathione levels (GSH, GSSG). Additionally, AT mitochondrial fractions were used to determine the activities of the tricarboxylic acid cycle (TCA) cycle enzymes (CS, α-KGDH, ICDH, SDH, MDH), respiratory chain complexes I-III, II-III, IV, the nicotinamide coenzymes NAD+ , NADH, and ATP/ADP levels. Compared with the NC group, the UCMS group showed very significantly increased OS marker levels, lowered antioxidant enzyme activities and gene expression, as well as lowered TCA cycle and respiratory chain activity and NAD+ , NADH, and ATP levels (p < .001 for all comparisons). Besides, the UCMS group had lowered TEE and insignificant FI and weight gain. In conclusion, AT of the UCMS-subjected rats showed a state of disturbed redox balance linked to disrupted energy homeostasis producing augmentation of AT.


Antioxidants , NAD , Rats , Male , Animals , Antioxidants/metabolism , Rats, Wistar , NAD/metabolism , Protein Carbonylation , Oxidation-Reduction , Oxidative Stress , Adenosine Triphosphate/metabolism , Homeostasis
2.
Medicine (Baltimore) ; 102(38): e35262, 2023 Sep 22.
Article En | MEDLINE | ID: mdl-37747018

Plant-based foods may influence gut microbiota profiles and contribute to overall human health. However, not all plant-based diets are nutritionally equivalent. We aimed to assess the association between a plant-based dietary index (PDI), specifically unhealthy PDI and healthy PDI (hPDI), and gut microbial composition and diversity in young women in Saudi Arabia. This observational study included 92 healthy women aged 18 to 25 years. Dietary and anthropometric data were collected. Fecal samples were analyzed using a novel whole-genome shotgun sequencing technique. Alpha and beta diversities measured the richness and composition of the gastrointestinal system. Relationships were examined with Pearson correlation, linear regression, and Wilcoxon Rank-Sum tests. Participants with higher PDI had higher levels of Bacteroides_u_s than those with lower PDI. hPDI was positively correlated with Bifidobacterium pseudocatenulatum, Bifidobacterium longum, Oscillibacter, and Lactobacillus acidophilus and inversely correlated with Clostridioides difficile (P < .05). Unhealthy plant-based dietary index was inversely correlated with B pseudocatenulatum, B longum, and L acidophilus and positively correlated with C difficile (P < .05) and other species of interest. In conclusion, hPDI scores were significantly associated with microbiota species linked with favorable health outcomes, independent of body mass index and gut microbial richness and composition in Arab women. Future studies should investigate the modulating effect of plant-based diets on the species identified in the current study.


Gastrointestinal Microbiome , Microbiota , Humans , Female , Arabs , Anthropometry , Bacteroides
3.
Plants (Basel) ; 12(3)2023 Jan 19.
Article En | MEDLINE | ID: mdl-36771547

Controlled Environment Agriculture (CEA) is a method of increasing crop productivity per unit area of cultivated land by extending crop production into the vertical dimension and enabling year-round production. Light emitting diodes (LED) are frequently used as the source of light energy in CEA systems and light is commonly the limiting factor for production under CEA conditions. In the current study, the impact of different spectra was compared with the use of white LED light. The various spectra were white; white supplemented with ultraviolet b for a week before harvest; three combinations of red/blue lights (red 660 nm with blue 450 nm at 1:1 ratio; red 660 nm with blue 435 nm 1:1 ratio; red 660 nm with blue at mix of 450 nm and 435 nm 1:1 ratio); and red/blue supplemented with green and far red (B/R/G/FR, ratio: 1:1:0.07:0.64). The growth, yield, physiological and chemical profiles of two varieties of lettuce, Carmoli (red) and Locarno (green), responded differently to the various light treatments. However, white (control) appeared to perform the best overall. The B/R/G/FR promoted the growth and yield parameters in both varieties of lettuce but also increased the level of stem elongation (bolting), which impacted the quality of grown plants. There was no clear relationship between the various physiological parameters measured and final marketable yield in either variety. Various chemical traits, including vitamin C content, total phenol content, soluble sugar and total soluble solid contents responded differently to the light treatments, where each targeted chemical was promoted by a specific light spectrum. This highlights the importance of designing the light spectra in accordance with the intended outcomes. The current study has value in the field of commercial vertical farming of lettuce under CEA conditions.

...